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Abstract: In this paper we study the dissipativity of a special class of nonlinear neutral delay integro-differential
equations. The dissipativity of three kinds of important numerical methods, the linear θ-methods, one-leg θ-
methods, and the one-leg methods is obtained when they are applied to these problems. Numerical experiments
are presented to check our findings.

Key–Words: Linear θ-methods, One-leg θ-methods, One-leg methods, Nonlinear neutral delay integro-differential
equations, Dissipativity, Absorbing set

1 Introduction

Many dynamical systems possess a bounded absorb-
ing set, which all trajectories enter in a finite time and
thereafter remain inside. These dynamical systems are
called dissipative [2]. When numerical methods are
used to solve them, we hope that the methods inherit
the dissiapativity.

Since the pioneer work [3] of Humphries and
Stuart which studied the dissipativity of Runge-Kutta
methods for initial value problems (IVPs) of ordinary
differential equations (ODEs) in 1994, many results
about dissipativity of numerical methods for ODEs
have been found [4, 5, 6, 7]. Huang [8] gave a suf-
ficient condition for the dissipativity of theoretical so-
lution, and investigated the dissipativity of (k, l) al-
gebraically stable of Runge-Kutta methods for the de-
lay differential equations (DDEs) with constant delay.
Then, some results about the dissipativity of linear θ-
methods, G(c, p, 0)-algebraically stable one-leg meth-
ods and multistep Runge-Kutta methods were also ob-
tained [9, 10, 11]. Tian [12] investigated the dissipa-
tivity of DDEs with a bounded variable lag and the
dissipativity of θ- methods in 2004. And Wen [13, 14]
studied the dissipativity of Volterra functional differ-
ential equations.

Recently, Gan [15, 16, 17] studies the dissipa-
tivity of θ-methods for integro-differential equations
(IDEs), nonlinear Volterra delay-integro-differential
equations (VDIDEs) and pantograph equations, re-
spectively. In addition, Zhen and Huang [18], Wen
[19] and Wang [20] consider the dissipativity for non-
linear neutral delay differential equations (NDDEs).

Wu and Gan [21] consider the dissipativity for a class
of nonlinear neutral delay integro-differential equa-
tions (NDIDEs).

In this paper, we study the numerical dissipativity
of a special class NDIDEs which arise widely in the
fields of applied sciences, such as physics, biology,
medicine, economics and so on [1]. Different from
the above equations, our NDIDEs have two different
constant delay variables. To our best knowledge, there
is not any result on the numerical dissipativity of this
kind of equations.

The paper is organized as follows. In section
2, the description of the problem class is given and
a sufficient condition is presented to ensure that the
NDIDEs is dissipative. In section 3 and section 4,
the dissipativity of θ-methods and one-leg methods is
studied respectively. And in section 5, numerical ex-
amples are presented to verify our findings.

2 Description of the problem class
Let ⟨·, ·⟩ be inner product in Cd and ∥ · ∥ be the corre-
sponding norm. Consider the nonlinear neutral delay
integro-differential equations NDIDEs

d

dt
[y(t)−Ny(t− τ1)] =

f(y(t), y(t− τ1),

∫ t

t−τ2

g(t, ξ, y(ξ))dξ),

t ≥ 0,

y(t) = φ(t),−τ ≤ t ≤ 0, (1)
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where τ1, τ2 are positive constants, τ = max{τ1, τ2}.
N ∈ Cd×d is a constant matrix satisfying ∥N∥ < 1,
φ : [−τ, 0] → Cd is a continuous function and f :
Cd×Cd×Cd → Cd is a locally Lipschitz continuous
function, g : [0,+∞) × [−τ2,+∞) × Cd → Cd is
a continuous function, f and g satisfy the following
conditions,

Re⟨u−Nv, f(u, v, w)⟩ ≤
γ + α∥u∥2 + β∥v∥2 + ω∥w∥2,

u, v, w ∈ Cd, (2)
∥g(t, θ, s)∥ ≤ c∥s∥,

for all t ≥ 0, t− τ2 ≤ θ ≤ t, s ∈ Cd, (3)

where γ, α, β, ω, c are real constants and β ≥ 0, γ ≥
0, ω ≥ 0.

Definition 1. The problem (1)-(3) is said to be dissi-
pative in Cd, if there exists a bounded set B ⊂ Cd,
such that for any given bounded set Φ ⊂ Cd, there
is a time t∗ = t∗(Φ), such that for any given initial
function φ ∈ C[−τ, 0] with φ(t) contained in Φ for
all t ∈ [−τ, 0] , the values of the corresponding solu-
tion of the problem are contained in B for all t ≥ t∗.
Here B is called an absorbing set of the problem.

In order to prove the dissipativity of (1)-(3), we
introduce the Generalized Halanay inequality [14].

Lemma 2. (Generalized Halanay inequality[14]) If
u(t), w(t) ≥ 0 for t ∈ (−∞,+∞),

u′(t) ≤ R(t) +A(t)u(t) +B(t) max
t−τ≤ξ≤t

w(ξ),

t ≥ t0,
w(t) ≤ G(t)u(t) +H(t) max

t−τ≤ξ≤t
w(ξ),

t ≥ t0,

and

max
−∞<ξ≤t0

w(ξ) ≤ G0

1−H0
max

−∞<ξ≤t0
u(ξ),

where A(t) is a continuous function satisfying A(t) ≤
A0 with constant A0 < 0. A(t), B(t), G(t) and
H(t) are nonnegative continuous functions satisfying
G(t) ≤ G0,H(t) ≤ H0 with constants G0 ≥ 0, 0 ≤
H0 < 1 for t ∈ [t0,∞). τ ≥ 0 is a constant, and if
there exists 0 < p < 1 such that

pA(t) +
G0

1−H0
B(t) ≤ 0,∀ t ≥ t0,

then we have

u(t) ≤ −γ
(1− p)A0

+ ϕ exp(−µ∗(t− t0)), t ≥ t0

w(t) ≤ G0

1−H0

−γ
(1− p)A0

+
G0

1−H0eµ
∗τ
ϕ exp(−µ∗(t− t0)), t ≥ t0.

where

ϕ = max
−∞<ξ≤t0

u(ξ), γ = max
t0≤ξ≤∞

R(ξ)

and µ∗ > 0 is defined as

µ∗ = inf{µ(t) : µ(t) +A(t) +B(t)
G0e

µ(t)τ

1−H0eµ(t)τ
= 0}

Theorem 3. Suppose y(t) is the solution of (1)-(3)
with α ≤ 0. If there exists 0 < p < 1 such that

pα+
4

1− 2∥N∥2
(β − α∥N∥2 + ωτ22 c

2) ≤ 0,

and t ≥ t0, we have following two results.
(i)

∥y(t)∥2 ≤ 2

1− 2∥N∥2
−γ

(1− p)α

+
1− 2∥N∥2

1− 2∥N∥2eµ∗τ
ϕ exp(−µ∗(t− t0))

with ϕ = max
t0−τ≤ξ≤t0

∥φ(t)∥2 and

µ∗ = inf
t≥t0
{µ(t) : µ(t) + α+ (β − α∥N∥2

+ωτ22 c
2)

4eµ(t)τ

1− 2∥N∥2eµ(t)τ
= 0}

where t ≥ t0 and µ∗ > 0.
(ii) For any ε > 0, the problem (1)-(3) is dissipa-

tive and there exist a absorbing set

B = B(0,

√
2

1− 2∥N∥2
−γ

(1− p)α
+ ε).

Proof: Define functions

u(t) =

{
∥y(t)−Ny(t− τ1)∥2, t ≥ t0,
1
2(1− 2∥N∥2)∥φ(t)∥2, t0 − τ ≤ t ≤ t0,

w(t) = ∥y(t)∥2, t ≥ t0 − τ.

We have

u′(t) = d
dt ⟨y(t)−Ny(t− τ1), y(t)−Ny(t− τ1)⟩

= 2Re⟨y(t)−Ny(t− τ1), f(t, y(t), y(t− τ1),
t∫

t−τ2

g(t, ξ, y(ξ))dξ)⟩

≤ 2(γ + α∥y(t)∥2 + β∥y(t− τ1)∥2

+ω∥
t∫

t−τ2

g(t, ξ, y(ξ))dξ)∥2)

≤ 2(γ + αw(t) + βw(t− τ1)

+ωc2τ22 max
t−τ2≤ξ≤t

w(ξ))
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and

u(t) ≤ 2(∥y(t)∥2 + ∥Ny(t− τ1)∥2)
≤ 2(w(t) + ∥N∥2w(t− τ1)),

when t ≥ t0. Therefore

2w(t) ≥ u(t)− 2∥N∥2w(t− τ1).

For α ≤ 0, we have

u′(t) ≤ 2γ + αu(t) + 2(β − α∥N∥2

+ωc2τ22 ) max
t−τ≤ξ≤t

w(ξ), t ≥ t0. (4)

On the other side, we can get

∥y(t)∥ = ∥y(t)−Ny(t− τ1) +Ny(t− τ1)∥
≤ ∥y(t)−Ny(t− τ1)∥+ ∥Ny(t− τ1)∥,

which follows that

w(t) ≤ 2u(t) + 2∥N∥2w(t− τ1). (5)

From (4) and (5), we have

u′(t) ≤ 2γ + αu(t) +B sup
t−τ≤ξ≤t

w(ξ),

w(t) ≤ 2u(t) + 2∥N∥2 sup
t−τ≤ξ≤t

w(ξ), t ≥ t0,

where B(t) = 2(β − α∥N∥2 + ωc2τ22 ). Then we
get the conclusion immediately from Generalized Ha-
lanay inequality [14].

3 Dissipativity of the θ- methods

3.1 Dissipativity of the one-leg θ- methods

Consider the following ODE

y′(t) = f(t, y(t)),

y(t0) = y0, t ≥ t0.

It can be solved by the one-leg θ- method leading to
the following form

yn+1 = yn + hf(θtn+1 + (1− θ)tn,

θyn+1 + (1− θ)yn)

Or equivalently,

Y (n) = yn + hθf(tn + θh, Y (n)),

yn+1 = yn + hf(tn + θh, Y (n)), (6)

where h > 0 is the integration step, tn = t0+nh, and
yn, Y (n) approximate to y(tn), y(tn + θh) respec-
tively.

Applying (6) to (1)-(3), we have

Y (n) −NȲ (n)

= yn −Nȳn + hθf(Y (n), Ȳ (n), G(n)),
yn+1 −Nȳn+1

= yn −Nȳn + hf(Y (n), Ȳ (n), G(n)),

(7)

where yn, Y (n), ȳn, Ȳ (n), G(n) approximate to
y(tn), y(tn + θh), y(tn − τ1), y(tn + θh −
τ1),

∫ tn+θh
tn+θh−τ2

g(tn + θh, ξ, y(ξ))dξ respectively.
When n ≤ 0, we have yn = φ(tn). And when
tn + θh ≤ 0, we get Y (n) = φ(tn + θh). If we
let τ1 = (m1− δ1)h, τ2 = (m2− δ2)h , then Ȳ (n), ȳn
and G(n) can be described by interpolation as

Ȳ (n) = δ1Y
(n−m1+1) + (1− δ1)Y

(n−m1), (8)
ȳn = δ1yn−m1+1 + (1− δ1)yn−m1 , (9)

where m1,m2 are integers and m1,m2 ≥ 1, δ1, δ2 ∈
[0, 1). When m2 ≥ 2, we can obtain

G(n)

=
h(1− δ2)

2

2
g(tn + θh, tn−m2 + θh, Y (n−m2))

+
h(2−δ22)

2
g(tn+θh, tn−m2+1 + θh, Y (n−m2+1))

+h

m2−2∑
k=1

g(tn + θh, tn−k + θh, Y (n−k))

+
h

2
g(tn + θh, tn + θh, Y (n)). (10)

While m2 = 1, we get

G(n) =
τ2
2
[(1− δ2)g(tn + θh, tn−1 + θh, Y (n−1))

+(1 + δ2)g(tn + θh, tn + θh, Y (n))]. (11)

Definition 4. When a method is used to solve the
problem (1)-(3) with step h, there is a constant r such
that, for any function φ(t), there exist an n0(φ̄, h),
φ̄ = sup

−τ≤t≤0
∥φ(t)∥ satisfying

∥yn∥ ≤ r, n ≥ n0.

This method is said to be dissipative.

Theorem 5. Assume that method (7) satisfies θ ∈
[12 , 1], and problem (1)-(3) satisfies α+β+ωτ22 c

2 < 0.
Then the method is dissipative.

Proof: Taking the inner products of each hand side of
(7) with themselves, and noting that θ ∈ [12 , 1] and the
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condition (2), we obtain

∥yn+1 −Nȳn+1∥2

≤ ∥yn −Nȳn∥2 + 2h[γ + α∥Y (n)∥2

+β∥Ȳ (n)∥2 + ω∥G(n)∥2].

By deducing, we can easily obtain

∥yn −Nȳn∥2

≤ ∥y0 −Nȳ0∥2 + 2hnγ + 2hα
n−1∑
j=0

∥Y (j)∥2

+2hβ

n−1∑
j=0

∥Ȳ (j)∥2 + 2hω

n−1∑
j=0

∥G(j)∥2.

(12)

Based on equation (8), we have

∥Ȳ (j)∥2

≤ δ21∥Y (j−m1+1)∥2 + (1− δ1)
2∥Y (j−m1)∥2

+δ1(1− δ1)(∥Y (j−m1+1)∥2 + ∥Y (j−m1)∥2)
= δ1∥Y (j−m1+1)∥2 + (1− δ1)∥Y (j−m1)∥2.

(13)

Notice that

h(1− δ2)
2

2
+

h(2− δ22)

2
+ (m2 − 2)h+

h

2
= τ2.

Then, we have

∥G(n)∥2

≤ τ2(
h(1−δ2)2

2
∥g(tn+θh, tn−m2+θh, Y (n−m2)∥2)

+
h(2−δ22)

2
∥g(tn+θh, tn−m2+1+θh, Y (n−m2+1))∥2

+ h

m2−2∑
k=1

∥g(tn + θh, tn−k + θh, Y (n−k))∥2

+
h

2
∥g(tn + θh, tn + θh.Y (n))∥2).

when m2 ≥ 2, by taking the inner product of (14)
with itself and using Cauchy-Schwarz inequality. By
using (3), we obtain

∥G(j)∥2

≤ τ2c
2(
h(1− δ2)

2

2
∥Y (j−m2)∥2

+
h(2− δ22)

2
∥Y (j−m2+1)∥2

+h

m2−2∑
k=1

∥Y (j−k)∥2 + h

2
∥Y (j)∥2). (14)

Putting (13) and (14) into (12), we have

∥yn −Nȳn∥2

≤ (1 + ∥N∥)2φ̄2 + 2nhγ + (2τ1β + ωτ32 c
2)φ̄2

+2h(α+ β + ωτ22 c
2)

n−1∑
j=0

∥Y (j)∥2. (15)

When m2 = 1, we can get the same result as (15).
When γ = 0, by using (10) and α+β+ωτ22 c

2 <
0, we have

lim
n→∞

∥Y (n)∥ = 0, lim
n→∞

∥Ȳ (n)∥ = 0,

which means for all ε > 0, there exists n0(φ̄, ε) > 0,
such that

∥Y (n)∥ ≤ ε, ∥Ȳ (n)∥ ≤ ε, ∥G(n)∥ ≤ cτ2ε, n ≥ n0.

Let

L = sup
∥u∥≤ε
∥v∥≤ε

∥w∥<cτ2ε

∥f(u, v, w)∥, u, v, w ∈ Cd.

We have

∥yn −Nȳn∥ ≤ hLθ + (1 + ∥N∥)ε
:= R0, n > n0,

from (7). Then, we can deduce that

∥yn∥ ≤
R0

1− ∥N∥δ1

n−n0−1∑
i=0

(
(1− δ1)∥N∥
1− ∥N∥δ1

)i

+(
(1− δ1)∥N∥
1− ∥N∥δ1

)n−n0φ0, n ≥ n0.(16)

When γ > 0, using the method of [8, 10], we
obtain

∥yn −Nȳn∥2 ≤ 2(1 + (2τ1β + ωτ32 c
2)R0

+4(m1 + 1)hγ

:= R.n ≥ n1

where n1 =
((1+∥N∥)2+(2τ1β+ωτ32 c

2))φ̄2

2hγ + 2(m1 + 1).

By deducing, we can easily get

∥yn∥ ≤
R

1− ∥N∥δ1

n−n0−1∑
i=0

(
(1− δ1)∥N∥
1− ∥N∥δ1

)i

+(
(1− δ1)∥N∥
1− ∥N∥δ1

)n−n0φ0, n ≥ n0.(17)

Notice that ∥N∥ < 1, (1−δ)∥N∥
1−∥N∥δ1 < 1 and θ ∈

[12 , 1]. Obviously, one-leg θ- method is dissipative.
This completes the proof of Theorem 4.
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3.2 Dissipativity of the linear θ- methods

In this subsection, we consider the dissipativity of the
linear θ- method for solving problem (1)-(3). It can be
written in the following form

yn+1 −Nȳn+1

= yn −Nȳn + hθf(yn+1, ȳn+1, Gn+1)

+h(1− θ)f(yn, ȳn, Gn), (18)

where yn, ȳn, and Gn approximate to y(tn), y(tn −
τ1), and

∫ tn
tn−τ2

g(tn, ξ, y(ξ))dξ respectively. When
n ≤ 0, we have yn = φ(tn). If we let τ1 =
(m1 − δ1)h, τ2 = (m2 − δ2)h , ȳn, Gn can be de-
scribed by interpolation as

ȳn = δ1yn−m1+1 + (1− δ1)yn−m1 , (19)

where m1,m2 are integers and m1,m2 ≥ 1; δ1, δ2 ∈
[0, 1). When m2 ≥ 2

Gn =
h(1− δ2)

2

2
g(tn, tn−m2 , yn−m2)

+
h(2− δ22)

2
g(tn, tn−m2+1, yn−m2+1)

+h

m2−2∑
k=1

g(tn, tn−k, yn−k)

+
h

2
g(tn, tn, yn). (20)

While m2 = 1

Gn =
τ2
2
[(1 + δ2)g(tn, tn, yn)

+(1− δ2)g(tn, tn−1, yn−1)]. (21)

Theorem 6. Assume that the method (18)-(21) sat-
isfies θ ∈ [12 , 1] . The problem (1)-(3) satisfies
α+ β + ωτ22 c

2 < 0. Then the method is dissipative.

Proof: From (18), we have

yn −Nȳn −hθf(yn, ȳn, Gn) = yn−1 −Nȳn−1

+h(1− θ)f(yn−1, ȳn−1, Gn−1). (22)

Taking the inner products of each hand side of (22)
with themselves, noting that θ ∈ [12 , 1] and condition
(2)-(3), we obtain

∥yn −Nȳn∥2 + h2θ2∥f(yn, ȳn, Gn)∥2

≤ ∥yn−1 −Nȳn−1∥2

+h2θ2∥f(yn−1, ȳn−1, Gn−1)∥2

+2hγ + 2hθ(α∥yn∥2 + β∥ȳn∥2 + ω∥Gn∥2)
+2h(1− θ)(α∥yn−1∥2 + β∥ȳn−1∥2

+ω∥Gn−1∥2).

By deducing we can easily obtain

∥yn −Nȳn∥2 + h2θ2∥f(yn, ȳn, Gn)∥2

≤ ∥y0 −Nȳ0∥2 + h2θ2∥f(y0, ȳ0, G0)∥2

+2nhγ + 2hα

n−1∑
j=1

∥yj∥2

+2hβ

n−1∑
j=1

∥ȳj∥2 + 2hω

n−1∑
j=1

∥Gj∥2

+2hθα∥yn∥2 + 2h(1− θ)α∥y0∥2

+2hθβ∥ȳn∥2 + 2h(1− θ)β∥ȳ0∥2

+2hθω∥Gn∥2 + 2h(1− θ)ω∥G0∥2. (23)

Next, from (19) and (20) we obtain

∥ȳj |2 ≤ δ1∥yj−m1+1∥2 + (1− δ1)∥yj−m1∥2, (24)

∥Gn∥2

≤ τ2c
2(
h(1− δ2)

2

2
∥yn−m2∥2

+
h(2− δ22)

2
∥yn−m2+1∥2

+h

m2−2∑
k=1

∥yn−k∥2 +
h

2
∥yn∥2). (25)

When m2 ≥ 2, from (23)-(25) we have

∥yn −Nȳn∥2 + h2θ2∥f(yn, ȳn, Gn)∥2

≤ 2h(α+ β + ωτ22 c
2)

n−1∑
j=0

∥yj∥2

+L0 + 2hnγ + [2βτ1 + ωτ32 c
2

+2h(1− θ)(β + ωτ22 c
2)]d0, (26)

where

L0 = sup
∥u∥≤

√
d0

∥v∥≤
√

d0

∥w∥<τ2c
√
d0

(
∥u−Nv∥2+h2θ2∥f(u, v, w)∥2

)
,

d0 = φ̄2.

We can easily prove that (26) is still valid for the case
of m2 = 1.

When γ = 0, it follows from (28) and α + β +
ωτ22 c

2 < 0 that

∥yn∥ < ε, n ≥ n0

which shows that for any ε > 0 , there exists n0(φ̄, ε),
such that

∥yn∥ < ε, n ≥ n0. (27)
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For the case of γ > 0 , using the techniques simi-
lar to that presented in [8], we can conclude that there
are r̃ > 0 and positive integer ñ0 > 0 such that

∥yn −Nȳn∥2 ≤ r̃, n ≥ ñ0 (28)

and

h2θ2∥f(yn, ȳn, Gn)∥2 ≤ r̃, n ≥ ñ0,

where

r̃ = 2
(
L1 + [2βτ1 + ωτ32 c

2

+2h(1− θ)(β + ωτ22 c
2)])d1

)
+ 4τ1γ + 6hγ

ñ0 =
L0+[2βτ1+ωτ32 c

2+2h(1−θ)(β+ωτ22 c
2)])d0

2hγ

+2m1 + 1

d1 =
4(m1+1)γ

−α+β+ωτ22 c
2

L1 = sup
∥u∥≤

√
d1

∥v∥≤
√

d1

∥w∥<τ2c
√
d1

(
∥u−Nv∥2+h2θ2∥f(u,v,w)∥2

)
.

When m1 = 1 ,from (18) and (28) we obtain

∥yn∥ ≤
√
r̃ + ∥N(δ1yn + (1− δ1)yn−1)∥,

n ≥ ñ0. (29)

From (29), we deduce that

∥yn∥ ≤
√
r̃

1− δ1∥N∥
+

(1− δ1)∥N∥
1− δ1∥N∥

∥yn−1∥,

n ≥ ñ0.

Then, we have

∥yn∥ ≤ d1 +

√
r̃

1− ∥N∥
, n ≥ n0. (30)

When m1 ≥ 2, from (18) and (28) we have

∥yn∥ ≤
√
r̃ + δ1∥N∥∥yn−m1+1∥

+(1− δ1)∥N∥∥yn−m1∥, n ≥ ñ0.

By deducing, we can prove that (30) is still valid. A
combination of (30) and (27) shows that the method is
dissipative, which completes the proof of Theorem 5.

4 Dissipativity of the one-leg meth-
ods

4.1 Description of the one-leg methods

One-leg method for solving

y′(t) = f(t, y(t)),

y(t0) = y0, t ≥ t0.

is

ρ(E)yn = hf(σ(E)tn, σ(E)yn),

where E denotes the shift operator, Eyn = yn+1.
Polynomial

ρ(ξ) =

k∑
j=0

αiξ
i, σ(ξ) =

k∑
j=0

βiξ
i

satisfy compatibility condition

ρ(1) = 0, ρ′(1) = σ(1) = 1, ρ(ξ), σ(ξ),

and they have no common factor.
In order to solve (1)-(3) ,we let h = τ1

m1
, τ2 =

(m2 − δ2)h throughout of this section 4, where δ2 ∈
[0, 1) and m1 ≥ k,m2 > 1 are given positive con-
stant. By complexification quadrature formula ,we ob-
tain

ρ(E)(yn −Nyn−m1)

= hf(σ(E)yn, σ(E)yn−m1 , Gn), (31)

where yn, Gn approximate to y(tn) and∫ σ(E)tn
σ(E)tn−τ2

g(tn, s, y(s))ds respectively. If
tn ∈ [−τ, 0], we can get yn = φ(tn). Define

Gn =
h(1− δ2)

2

2
g(σ(E)tn, σ(E)tn−m2 ,

σ(E)yn−m2) +
h(2− δ22)

2
g(σ(E)tn,

σ(E)tn−m2+1, σ(E)yn−m2+1)

+h

m2−2∑
k=1

g(σ(E)tn, σ(E)tn−k, σ(E)yn−k)

+
h

2
g(σ(E)tn, σ(E)tn, σ(E)yn).

Definition 7. A method is said to be G-stable, if
there exist a symmetric positive definite matrix G =
(gij)

k
i,j=1, for all x0, . . . , xk ∈ R , such that

XT
1 GX1 −XT

0 GX0 ≤ 2σ(E)x0ρ(E)x0,

where Xi = (xi, . . . , xi+k−1)
T , i = 0, 1.

By [22] ,we know G-stable is equivalent to A -
stable.

4.2 Dissipativity of the one-leg methods

In order to prove our main conclusion , we introduce
a lemma [23].
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Lemma 8. Suppose that the polynomial

Pi(z) =

r∑
j=1

pijz
j−1, i = 1, . . . , r

form a basis for the space of polynomials of degree not
more than r− 1 and that δ = (δT1 , . . . , δ

T
r )

T ∈ Rpr is
given. Then the system of equations

r∑
j=1

pijuj = δi, i = 1, . . . , r

possesses a unique solution u = (uT1 , . . . , u
T
r )

T . Fur-
thermore, if P is the r × r matrix with entries pij ,
then there is a constant C = C(P ) such that any
u = (uT1 , . . . , u

T
r )

T ∈ Rpr obeying the inequality

r∑
j=1

∥pijuj∥ ≤ ∥gi∥

for all i, also satisfies

∥u∥∗,∞ ≤ C∥g∥∗,∞,

where g = (gT1 , . . . , g
T
r )

T ∈ Rpr and ∥u∥∗,∞ =
max1≤i≤r ∥ui∥.

For simplicity, we suppose that (31) has unique
solution for any sufficiently small step h.

Theorem 9. Assume the method (31) is A-stable and
the problem (1)-(3) satisfies α+β+ωτ22 c

2 < 0. Then
the method is dissipative.

Proof: Let {yn}∞n=0 are a sequence of solutions. De-
fine G-norm of Hn is

∥Hn∥2G =

k∑
i=1

k∑
j=1

gij⟨yn+i−1, yn+j−1⟩

where Hn = (yTn , . . . , y
T
n+k−1)

T and Zn = Hn −
NHn−m1 . From the definition of G-stable we have

∥Zn+1∥2G − ∥Zn∥2G
≤ 2Re⟨ρ(E)(yn −Nyn−m1),

σ(E)(yn −Nyn−m1)⟩
= 2hRe⟨f(σ(E)yn, σ(E)yn−m1 , Gn),

σ(E)(yn −Nyn−m1)⟩
≤ 2h(γ + α∥σ(E)yn∥2

+β∥σ(E)yn−m1∥2 + ω∥Gn∥2). (32)

When γ ̸= 0, we define

F = sup
∥u∥2,∥v∥2≤4kγ/−(α+β+ωτ22 c2)

∥w∥2≤τ22 c
24kγ/−(α+β+ωτ22 c

2)

∥f(u, v, w)∥

and
φ̄ = sup

−m≤i≤0
∥σ(E)yi∥.

Let

s = ⌊−τ1γ + 2βτ1 + ωτ32 c
2

2kτ1γ

−
τ1(α+ β + ωτ22 c

2))φ̄2 + ∥Z0∥2G
2kτ1γ

⌋+ 1,

and

M = km1s,

where ⌊x⌋ means the largest integer part of x. The
sum of (32) from n = 1 to n = M − 1 is

∥ZM∥2G − ∥Z0∥2G

≤ 2Mhγ + 2hα

M−1∑
i=0

∥σ(E)yi∥2

+ 2hβ

M−1∑
i=0

∥σ(E)yi−m1∥2+2hω

M−1∑
i=0

∥Gi∥2.(33)

According to (3) and (31), we can get

∥Gn∥2

≤ τ2c
2(
h(1− δ2)

2

2
∥σ(E)yn−m2∥2

+
h(2− δ22)

2
∥σ(E)yn−m2+1∥2

+ h

m2−2∑
k=1

∥σ(E)yn−k∥2+
h

2
∥σ(E)yn∥2). (34)

Putting (34) into (33), we have

∥ZM∥2G − ∥Z0∥2G
≤ 2Mhγ + (2βτ1 + ωτ32 c

2)φ̄2

+2h(α+β +ωτ22 c
2)

M−1∑
i=0

∥σ(E)yi∥2. (35)

Similarly, the sum of (32) from 0 to M −m1 is

∥ZM−m1∥2G − ∥Z0∥2G
≤ [2βτ1 + ωτ32 c

2 − 2τ1(α+ β

+ωτ22 c
2)]φ̄2 + 2(M −m1)hγ

+2h(α+β+ωτ22 c
2)

M−m1−1∑
i=−m1

∥σ(E)yi∥2. (36)
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Therefore, by (35) and (36), we obtain

∥ZM−m1∥2G + ∥ZM∥2G
≤ 2∥Z0∥2G + (4M − 2m1)hγ

+2[2βτ1 + ωτ32 c
2

−τ1(α+ β + ωτ22 c
2)]φ̄2

+2h(α+ β + ωτ22 c
2)

×
M−1∑
i=0

(∥σ(E)yi∥2 + ∥σ(E)yi−m1∥2),

which contains

M−1∑
i=0

(∥σ(E)yi∥2 + ∥σ(E)yi−m1∥2)

≤ 4Mγ

−(α+ β + ωτ22 c
2)

=
4km1sγ

−(α+ β + ωτ22 c
2)
. (37)

We rewrite (37) to the following form

s−1∑
i=0

m1(i+1)−1∑
j=m1i

k(j+1)−1∑
l=kj

(∥σ(E)yl∥2+∥σ(E)yl−m1∥2)

≤ 4km1sγ

−(α+ β + ωτ22 c
2)
. (38)

So there exist an i0 ∈ [0, s− 1], such that

m1(i0+1)−1∑
j=m1i0

k(j+1)−1∑
l=kj

(∥σ(E)yl∥2 + ∥σ(E)yl−m1∥2)

≤ 4km1γ

−(α+ β + ωτ22 c
2)
.

Furthermore, there exist a j0 ∈ [m1i0,m1(i0+1)−1],
such that

k(j0+1)−1∑
l=kj0

(∥σ(E)yl∥2 + ∥σ(E)yl−m1∥2)

≤ 4kγ

−(α+ β + ωτ22 c
2)
.

Therefore , we have

∥σ(E)yn∥2 + ∥σ(E)yn−m1∥2 ≤
4kγ

−(α+ β + ωτ22 c
2)

and

∥ρ(E)(yn −Nyn−m1)∥2

= h2∥f(σ(E)yn, σ(E)yn−m1 , Gn, )∥2

≤ h2F 2

for all n ∈ [kj0, k(j0 + 1) − 1]. Based on the fact
that the method is A-stable and ρ(E), σ(E) have no
common factor, we conclude that σ(E) is a poly-
nomial with degree k. Then, {ziρ(z), ziσ(z), i =
0, . . . , k − 1} constitute a basis for the space of poly-
nomials of degree not more than 2k − 1. Let r =
2k, yj = (ykj0 , . . . , yk(j0+2)−1)

T and

∥gi∥ ≤ η, i = 0, . . . , 2k − 1,

where

η = max{

√
4kγ

−(α+ β + ωτ22 c
2)
, hF}.

By using lemma 7 on (36) and (37), we find out there
exist a constant C1 and a coefficient which depends
only on ρ(z), σ(z), such that

∥yn −Nyn−m1∥ ≤ C1η.

Furthermore , we can prove that ∥Hki0∥ ≤ R0 when
kj0 ≤M .

Next we will prove that {Hn}∞n=0 enter an open
ball B(0, R0) after at least M̃ steps, where

s̃ = ⌊
−τ1γ +R2 + 2τ1(β + ωτ22 c

2) 4kγ
−(α+β+ωτ22 c

2)

2kτ1γ
⌋+ 1

and

M̃ = km1s̃.

Let N = kj0. From (38), we have

s̃−1∑
i=0

m1(i+1)−1∑
j=m1i

k(j+1)−1∑
l=kj

(∥σ(E)yN+l∥2

+∥σ(E)yN+l−m1∥2)

≤ 4km1s̃γ

−(α+ β + ωτ22 c
2)
.

So there exist an j1 ∈ [m1i1,m1(i1 + 1) − 1], such
that

k(j1+1)−1∑
l=kj1

(∥σ(E)yN+l∥2+∥σ(E)yN+l−m1∥2)

≤ 4kγ

−(α+ β + ωτ22 c
2)
.

Furthermore, there exist a j1 ∈ [m1i1,m1(i1+1)−1]
such that

k(j1+1)−1∑
l=kj1

(∥σ(E)yN+l∥2 + ∥σ(E)yN+l−m1∥2)

≤ 4kγ

−(α+ β + ωτ22 c
2)
.
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Therefore , we have

∥σ(E)yn∥2 + ∥σ(E)yn−m1∥2 ≤
4kγ

−(α+ β + ωτ22 c
2)

and

∥ρ(E)(yn −Nyn−m1)∥2

= h2∥f(σ(E)yn, σ(E)yn−m1 , Gn)∥2

≤ h2F 2

for all n ∈ [N + kj1, N + k(j1 − 1)]. Therefore
Hn −NHn−m1 will enter an open ball B(0, R̃) after
at least N + kj1 steps, where

∥Hn −NHn−m1∥G ≤ R̃

for all n ∈ [N,N + kj1].
By the similar method in proving the Theorem 4

and 5, we obtain

∥Hn∥ ≤ R̃1. (39)

When γ = 0, we have

lim
n→∞

∥σ(E)yn∥ = 0

according to (34) and α+β+ωτ22 c
2 < 0. This reveals

that there exist an n0(φ̄, ε) > 0, such that

∥σ(E)yn∥ ≤ ε.

For ε > 0, if we let

F̃0 = sup
∥u∥,∥v∥≤ε

∥w∥≤τ2cε

∥f(u, v, w)∥

then

∥ρ(E)(yn −Nyn−m1)∥
= h∥f(σ(E)yn, σ(E)yn−m1 , Gn)∥
≤ hF̃0.

By deducing, we know that there exist a constant
C̃1 which depends only on the method itself, such that

∥yn −Nyn−m1∥ ≤ C̃1ε

for all n ≥ n0. Hence, according to the equivalence
principle of the norm, there exist a constant C̃2, such
that

∥Hn −NHn−m1∥G ≤ C̃2ε.

Furthermore, we obtain

∥Hn∥G ≤ C̃ ′
2ε. (40)

In summary, (39) and (40) show that the one-leg
method is dissipative, which completes the proof of
Theorem 7.

Remark Problem (1)-(3) is a very general one. (i)
Gan [16] obtained the dissipativity of θ-methods for
(VDIDEs) which is a special case of problem (1)-(3)
by taking N = 0 and τ1 = τ2. Theorem 5 and 6
can be directly applied to such problems. (ii) When
equation (1) does not contain integral item, problem
(1)-(3) is reduced to NDDEs which was considered in
[19]. Theorem 5 and 6 can also be directly applied
to such problems. (iii) When N = 0 and equation
(1) does not contain integral item, problem (1)-(3) is
equal to (DDEs). From the result of our paper, we can
get the same conclusion as Huang[8].

5 Numerical examples

In this section ,we will consider a given nonlinear neu-
tral delay integro-differential equation

d

dt
[y1(t)− 0.1y2(t− 1)]

= −4y1(t) + sin y2(t) sin y1(t− 1)

+0.6

∫ t

t−2
sin ty1(θ)dθ + sin t, t ≥ 0,

d

dt
[y2(t)− 0.2y1(t− 1)]

= −5y2(t)− cos y1(t) cos y2(t− 1)

+0.4

∫ t

t−2
cos ty2(θ)dθ + cos t, t ≥ 0,

y1(t) = sin t,

y2(t) = cos t,−2 ≤ t ≤ 0. (41)

Here and later, we let γ = 2.15, α = −3, β =
0.64, ω = 0.33, c = 1, τ2 = 2, so the equation
(41) satisfies (2) and (3) with α+ β + ωτ22 c

2 < 0.
First, we use one-leg θ-method (11) to solve (41)

where we take θ=1, h = 0.05. From figures 1 and 2,
we can see that the solution is oscillating, but it enters
into an absorbing set after some time. This reveals the
method is dissipative.

Second, we use linear θ-method (18) to solve (41)
where we take θ=0.5, h = 0.05. From figures 3 and
4, we can see that the method is also dissipative.

At last, we use one-leg method as follows

3

2
(yn+2 −Nȳn+2)

= 2(yn+1 −Nȳn+1)−
1

2
(yn −Nȳn)

+hf(yn+2, ȳn+2, Gn)
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to solve (41) where h = 0.05. Figures 5 and 6 show
the dissipative of the method again.
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Figure 1: The numerical solution curve of one-leg θ m
method while h = 0.05 and θ = 1
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Figure 2: The phase space curve of one-leg θ- m method
while h = 0.05 and θ = 1
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Figure 3: The numerical solution curve of linear θ- m
method while h = 0.01 and θ = 0.5

6 Conclusion
In this paper, we discuss a special class of nonlinear
neutral delay integro-differential equations which has
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Figure 4: The phase space curve of linear θ- method while
h = 0.01 and θ = 0.5
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Figure 5: The numerical solution curve of one-leg method
while h = 0.05
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Figure 6: The phase space curve of one-leg method while
h = 0.05
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two different constant delay variables. At first, we
prove the dissipativity of the problem itself. Then,
we prove that one-leg θ-methods, linear θ-methods,
one-leg methods are dissipative with some given con-
ditions when they are used to solve our problem.

Our present work has mainly focused on these
three methods. In fact, it could also be extend to
other numerical methods, such as Runge-kutta meth-
ods, multi-step methods. This research is ongoing.
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